Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xin-Hua Li,* Qian Miao, Hong-Ping Xiao and Mao-Lin Hu

School of Chemistry and Materials Science, Wenzhou Normal College, Zhejiang, Wenzhou 325027, People's Republic of China

Correspondence e-mail: lixinhua01@126.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.034$
$w R$ factor $=0.090$
Data-to-parameter ratio $=11.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography

Printed in Great Britain - all rights reserved

4,4'-Bipyridinium hexaaquacobalt(II) disulfate

The title compound, $\left(\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2}\right)\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{SO}_{4}\right)_{2}$, consists of 4,4'-bipyridinium dications, hexaaquacobalt(II) cations and sulfate anions that are linked by hydrogen bonds into a network structure. Six water molecules are coordinated to the Co atom and the geometry is octahedral. The bipyridinium cation has site symmetry 2 and the Co atom lies on a position of site symmetry $2 / m$.

Comment

4,4 - Bipyridine acts as a bridging ligand in metal complexes (Tong et al., 2000), as a host molecule in inclusion compounds (Lu et al., 2001), and as a proton acceptor in charge-transfer complexes (Zhu, 2003). The heterocycle is, however, not involved in such interactions but is protonated in the title compound, (I), which consists of the diprotonated 4,4'-bipyridinium cation (which has site symmetry 2), $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ cations and sulfate anions. The Co atom lies on a position of site symmetry $2 / m$ and its geometry is octahedral, arising from coordination by six water molecules (Fig. 1). The dications and anions interact through hydrogen bonds (Fig. 2) to generate a three-dimensional network.

(I)

Experimental

Cobalt sulfate heptahydrate $(0.06 \mathrm{~g}, 0.2 \mathrm{mmol})$ was dissolved in water $(10 \mathrm{ml})$ and the solution was mixed with a dimethylformamide solution $(10 \mathrm{ml})$ of sodium 5 -sulfoisophthalate $(0.11 \mathrm{~g}, 0.4 \mathrm{mmol})$ and $4,4^{\prime}$ bipyridine ($0.03 \mathrm{~g}, 0.2 \mathrm{mmol}$). The reaction mixture was filtered; pink plate-shaped crystals separated from the solution after about three months.

Crystal data

$\left(\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2}\right)\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{SO}_{4}\right)_{2}$	$D_{x}=1.787 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=517.35$	Mo K 2 radiation
Monoclinic, $C 2 / m$	Cell parameters from 937
$a=11.9210(11) \AA$	reflections
$b=6.6042(6) \AA$	$\theta=2.6-21.4^{\circ}$
$c=12.9122(12) \AA$	$\mu=1.19 \mathrm{~mm}^{-1}$
$\beta=108.951(1)^{\circ}$	$T=298(2) \mathrm{K}$
$V=961.46(15) \AA^{3}$	Plate, pink
$Z=2$	$0.26 \times 0.22 \times 0.05 \mathrm{~mm}$

Received 25 October 2004 Accepted 29 October 2004 Online 6 November 2004

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.74, T_{\text {max }}=0.94$
2551 measured reflections
937 independent reflections

$$
905 \text { reflections with } I>2 \sigma(I)
$$

$R_{\text {int }}=0.018$
$\theta_{\text {max }}=25.1^{\circ}$
$h=-14 \rightarrow 14$
$k=-7 \rightarrow 7$
$l=-15 \rightarrow 12$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.090$
$S=1.19$
937 reflections
85 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Co} 1-\mathrm{O} 1$	$2.0695(18)$	$\mathrm{Co} 1-\mathrm{O} 2$	$2.078(2)$
$\mathrm{O1}^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{O} 1^{\mathrm{ii}}$	180	$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{O} 2$	$86.80(8)$
$\mathrm{O1}^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{O} 1$	$91.99(12)$	$\mathrm{O1}^{\mathrm{ii}}-\mathrm{Co} 1-\mathrm{O} 2$	$93.20(8)$
$\mathrm{O1}^{\mathrm{ii}}-\mathrm{Co} 1-\mathrm{O} 1$	$88.01(12)$	$\mathrm{O} 2-\mathrm{Co} 1-\mathrm{O} 2^{\mathrm{iii}}$	180

Symmetry codes: (i) $x,-y, z$; (ii) $1-x, y, 1-z$; (iii) $1-x,-y, 1-z$.

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N1-H1N \cdots O4	0.86	1.79	$2.634(3)$	166
N1-H1N \cdots O4	0.86	1.79	$2.634(3)$	166
O2-H2A \cdots O3 $^{\text {iv }}$	0.82	1.98	$2.759(2)$	158
${\text { O1-H1A } \cdots 5^{v}}^{\text {O1 }}$	0.82	1.97	$2.750(2)$	159
O1-H1B \cdots O3	0.82	1.95	$2.741(2)$	161
N1-H1N \cdots O4	0.86	1.79	$2.634(3)$	166

Symmetry codes: (iv) $\frac{1}{2}-x, y-\frac{1}{2}, 1-z$; (v) $\frac{1}{2}+x, \frac{1}{2}+y, z$.
The water H atoms were refined subject to the restraint $\mathrm{O}-\mathrm{H}=$ 0.82 (1) \AA. The other H atoms were positioned geometrically and allowed to ride on their parent atoms at distances of $0.86(\mathrm{~N}-\mathrm{H})$ and $0.93 \AA(\mathrm{C}-\mathrm{H})$, with $U_{\text {iso }}=1.2 U_{\mathrm{eq}}(\mathrm{C}, \mathrm{N})$.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

We acknowledge financial support by the Wenzhou Science and Technology Project of China (No. S2003A008) and the '551' Distinguished Person Foundation of Wenzhou.

References

Bruker (2002). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Figure 1
The structure of (I), with the atom numbering, showing displacement ellipsoids at the 50% probability level.

Figure 2
The three-dimensional network formed by hydrogen-bonding interactions in (I), which are shown as dashed lines.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Lu, J. Y., Norman, C., Abboud, K. A. \& Ison, A. (2001). Inorg. Chem. Commun. 4, 459-461.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Tong, M. L., Chen, X. M. \& Ng, S. W. (2000). Inorg. Chem. Commun. 3, 436441.

Zhu, N. W. (2003). Z. Kristallogr. New Cryst. Struct. 218, 1-2.

